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Abstract 

Insulin resistance and subsequent insulin secretory defect are two main features of type 2 diabe-
tes and associated metabolic disorders. The animal models of type 2 diabetes are very complex
and are as heterogeneous as the disease. We have evaluated the effect of various antidiabetic
and lipid lowering agents (fenofibrate, rosiglitazone, glimepiride, metformin and simvastatin)
on the metabolic abnormalities induced by combining a high-fat diet and multiple low-dose
streptozocin (MLDS) in mice. Male Swiss albino mice were orally treated with the above agents
and fed with a diet containing high fat for 28 days. On day 15 the animals were injected intra-
peritoneally with low-dose streptozocin (40 mg kg−1), which was administered for five consecu-
tive days. At the end of the 28-day treatment plasma metabolic parameters (glucose,
triglyceride and immunoreactive insulin) were estimated. The antidiabetic and hypolipidaemic
agents exhibited differential effects on these metabolic parameters. With the exception of
fenofibrate all these agents reduced the plasma glucose levels, and the effects of metformin
and rosiglitazone on glucose were found to be statistically significant. Although the effect of
the test drugs on cholesterol was modest, a significant decrease in triglyceride levels was
observed with sub-chronic treatment with these agents. Interestingly, glimepiride mildly ele-
vated the insulin levels while the other antidiabetics and hypolipidaemics reduced the insulin
levels, with metformin and rosiglitazone exhibiting statistically significant effects on insulin. To
our knowledge this is the first report on the effect of various peroxisome proliferator-activated
receptor modulators and newer antidiabetics on the metabolic effects induced by the combined
high-fat diet and MLDS model of type 2 diabetes in Swiss albino mice. The results suggested the
complexity of the hyperglycaemia, hyperinsulinaemia and hypertriglyceridaemia induced by the
high-fat diet and MLDS mouse model, and their correction by various antidiabetics and antihy-
perlipidaemics may have involved diverse mechanisms.

Type 2 diabetes is a heterogeneous disease with a complicated pathogenesis which is related
to genetic susceptibility and life style, especially the dietetic style (Roith & Zick 2001). Type
2 diabetes is a multifactor disease characterized by insulin resistance with a relative impair-
ment in insulin secretion and is often associated with hypertension and hyperlipidaemia.
Indeed, studies in type 2 diabetes patients suggest that, although poor metabolic control is the
most important determinant of the development of nephropathy, hypertension and hyperlipi-
daemia are also considered to be involved (Miranda et al 2005). Most of the individuals diag-
nosed with type 2 diabetes are found to be obese. The two metabolic defects characterizing
type 2 diabetes are derangement of insulin secretion that is delayed or is insufficient relative
to glucose load and inability of peripheral tissues to respond to insulin—called insulin resist-
ance. Studies of the natural history of type 2 diabetes have shown that the prediabetic state is
characterized by resistance to insulin-mediated glucose disposal and compensatory hyperin-
sulinaemia. The transition from pre-diabetes to type 2 diabetes occurs when the secretory
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capacity of the pancreatic b cell is no longer able to compen-
sate for the insulin resistance (Simmons 2005; Miranda et al
2005; Arulmozhi & Portha 2006). 

There are two major underlying causes for this metabolic
syndrome: obesity and insulin resistance. These two parameters
are closely and reciprocally interrelated. It is well established
that obesity can cause insulin resistance, but underlying genetic
forms of insulin resistance seem to increase susceptibility for
the syndrome by recapitulating the metabolic abnormalities of
abdominal obesity (Grundy 2006). The core risk factors of the
metabolic syndrome are atherogenic dyslipidaemia, elevated
blood pressure, and elevated plasma glucose. In addition to
hyperglycaemia, systemic or local elevations in insulin may
contribute to aberrant lipid metabolism and vascular wall func-
tion (Kunjathoor etal 1996). 

In spite of the availability of many animal models for type
2 diabetes mellitus, including both genetic and chemically
induced models, none of them simulate human type 2 diabe-
tes mellitus, as spontaneous animal models of type 2 diabetes
mellitus are highly heterogeneous. At one end of the spec-
trum there is a mild hyperglycaemia associated with obesity
and hyperinsulinaemia. At the other extreme, animal models
of type 2 diabetes mellitus can develop a severe form of dia-
betes with extensive b-cell degeneration, occasionally result-
ing in ketosis and requirement of exogenous insulin to sustain
life (Arulmozhi et al 2004). High doses of b-cell toxins such
as streptozocin and alloxan induce insulin deficiency and type 1
diabetes with ketosis. However, doses calculated to cause a
partial destruction of b-cell mass can be used to produce a
mild insulin deficient state of type 2 diabetes mellitus, with-
out tendency to cause ketosis. The development of hypergly-
caemia in animals following streptozocin injection is
primarily due to the direct pancreatic b-cell destruction, and
resulting in insulin deficiency rather than the consequence of
insulin resistance. An ideal model should simulate the meta-
bolic characteristics of patients with type 2 diabetes and
should be cost effective (Arulmozhi et al 2004). 

The combination of a high-fat diet and multiple low-dose
streptozocin (MLDS) injections to animals is reported to
have the characteristic features of human type 2 diabetes.
Recently various investigators have reported the use of
MLDS animals as a model of metabolic abnormalities as the
clinical presentations of MLDS animals are multifaceted.
Through evidence available on the autoimmune destruction
of pancreatic b cells by multiple low-dose streptozocin
(McEvoy et al 1984; Ogawa et al 1999), high-fat feeding of
MLDS animals provides a new animal model for type 2 dia-
betes, importantly with lipid abnormalities (Kunjathoor et al
1996; Luo et al 1998; Takamura et al 1999; Reed et al 2000;
Srinivasan et al 2005). Sugano et al (2006) reported that a
high-fat diet and MLDS animals would serve as a model for
diabetic nephropathy. 

The high-fat MLDS animal is an emerging animal model
for the metabolic abnormalities seen with type 2 diabetes.
Therefore, we have investigated the oral subchronic adminis-
tration of various classes of antidiabetic and antihyperlipidae-
mic agents (glimepiride, fenofibrate, metformin, rosiglitazone
and simvastatin) on various metabolic parameters in MLDS-
high fat-induced metabolic abnormalities in male Swiss albino
mice. We interpreted the intervention of these treatments in

MLDS-induced hyperglycaemia and aimed to shed some
light on the mechanisms underlying the effects of these
agents. 

Animals 

Adult male Swiss albino mice (20–30 g) were obtained from
the Research Animal Facility of Poona College of Pharmacy
(PCP), Pune, India. On arrival, the animals were placed at
random and allocated to treatment groups (6–10 animals per
treatment) in polypropylene cages with paddy husk as bed-
ding. Animals were housed at a temperature of 24 ± 2°C on a
12-h light–dark cycle with free access to water and standard
pelleted laboratory animal diet. All the experimental proce-
dures and protocols used in this study were reviewed and
approved by the Institutional Animal Care and Use Commit-
tee of PCP, Pune, India, and were in accordance with the
guidelines of the Committee for the Purpose of Control and
Supervision of Experiments on Animals (CPCSEA), Ministry
of Forests and Environment, Government of India. Rules of
CPCSEA are laid down as per the guidelines of the Institute
of Laboratory Animal Resources, US. 

Drugs and chemicals 

Fenofibrate and streptozocin were obtained from Sigma
Chemical Co. (St Louis, MO). Rosiglitazone, glimepiride,
metformin and simvastatin were gifts from Lupin Ltd, Pune,
India. All other chemicals and reagents were of pure analytical
grade and obtained from local suppliers. 

Drug treatments and MLDS-high-fat 
diet-induced metabolic abnormalities 

After acclimation in the laboratory for one week, the mice
were divided into six groups to receive the following
treatments: group 1, 0.3% Tween 80 10 mLkg−1; group 2,
fenofibrate 100 mgkg−1; group 3, metformin 10 mgkg−1;
group 4, glimepiride 10 mg kg−1; group 5, rosiglitazone
10 mgkg−1; and group 6, simvastatin 100 mgkg−1. The ani-
mals were fed with a high-fat diet comprising 40% fat, 42%
carbohydrates and 18% protein (Nutrilabs, Bangalore, India).
The drugs were solubilized in 0.3% Tween 80 and adminis-
tered by oral gavage between 10.00–11.00 h from day 7 to
day 28. The doses of the medications were chosen from
preliminary studies and previous reports (Chaput et al 2000;
El-Swefy et al 2000; Ramadan et al 2006). 

On day 15, the animals were injected inraperitoneally with
a low dose of streptozocin (40 mgkg−1) dissolved in citrate
buffer (pH 4.5) for five consecutive days. The mice were kept
on the above treatments and fed with the high-fat diet until
day 28. 

A separate group of animals were fed a normal chow diet
and did not receive streptozocin injections (non-diabetic
control). 

On day 28, blood samples were collected from mice
(under mild anaesthesia) via the retro-orbital sinus 1 h after

Materials and Methods 

JPP60(9).book  Page 1168  Wednesday, July 30, 2008  6:11 PM



Metabolic effects of various antidiabetic and hypolipidaemic agents 1169

the administration of the last dose. No significant effect of
ether anaesthesia was observed on the plasma parameters
measured. 

Determination of plasma metabolic parameters 

Plasma obtained from the mice was used to estimate the
metabolic parameters. Glucose, triglyceride and total choles-
terol levels were measured spectrophotometrically using
commercially available kits (Bayer Diagnostics, India).
Plasma insulin was assayed using an ELISA kit (Crystal
Chemicals, Chicago, IL). 

Statistical analysis 

Results were expressed as mean ± s.e.m. Comparisons
between groups were made by Student’s t-test or analysis of
variance and Dunnett’s post-test as per suitability. A P value
of < 0.05 was considered as significant. 

Effect of various antidiabetics and 
antihyperlipidaemics on glucose levels 
in MLDS-high-fat-fed mice 

Though the MLDS-high-fat-fed mice showed a significant
increase in body weight when compared with mice fed a nor-
mal chow diet (non-diabetic control), no significant difference
in body weight of the mice in the various treatment groups was
observed during or after the study (data not shown). After the
high-fat diet and MLDS the mice exhibited obvious hypergly-
caemia, as evidenced by elevated plasma glucose levels
(Figure 1). With the exception of fenofibrate, the drugs reduced

the elevated glucose level with the order of potency being
rosiglitazone > metformin > glimepiride > simvastatin. Rosigli-
tazone and metformin significantly (P < 0.05) reduced the
glucose levels (216.25±16.5mgdL−1 (vehicle) vs 137.96±19.80
and 145.93 ± 11.28mgdL−1, respectively). 

Effect of various antidiabetics and 
antihyperlipidaemics on triglyceride 
levels in MLDS-high-fat-fed mice 

A high-fat diet and MLDS treatment significantly increased
triglyceride levels in the mice but the test drugs significantly
(P < 0.01) reduced these elevated levels. Surprisingly,
rosiglitazone, fenofibrate, metformin and glimepiride exhibited
a similar reduction (~50–60%) in triglyceride levels (Figure 2). 

Effect of various antidiabetics and 
antihyperlipidaemics on total cholesterol 
levels in MLDS-high-fat-fed mice 

A moderate and significant (P < 0.05) elevation of total cho-
lesterol levels was observed after the high-fat diet and MLDS
treatment in mice. The test drugs did not significantly reduce
the elevated total cholesterol levels, but a trend to decrease
was seen (Figure 3). 

Effect of various antidiabetics and 
antihyperlipidaemics on insulin levels 
in MLDS-high-fat-fed mice 

Rosiglitazone and metformin significantly (P < 0.01 and 0.05,
respectively) reduced the insulin levels when compared with
the vehicle-treated animals (1.08 ± 0.15 ngmL−1 (vehicle) vs
0.44 ± 0.10 ngmL−1 (rosiglitazone) and 0.67 ± 0.06 ngmL−1

Results 

Figure 1 Effect of fenofibrate (Feno; 100 mgkg−1, p.o.), metformin
(Met; 10 mgkg−1, p.o.), glimepiride (Glime; 10 mgkg−1, p.o.), rosiglita-
zone (Rosi; 10 mgkg−1, p.o.) and simvastatin (Simva; 100 mgkg−1, p.o.)
on plasma glucose levels in high-fat-diet-MLDS male Swiss albino mice
after 28-days treatment. Bars represent means ± s.e.m. from n = 6–10.
*P < 0.05 compared with vehicle treatment; #P < 0.05 compared with
non-diabetic control animals.
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Figure 2 Effect of fenofibrate (Feno; 100 mgkg−1, p.o.), metformin
(Met; 10 mgkg−1, p.o.), glimepiride (Glime; 10 mgkg−1, p.o.), rosiglita-
zone (Rosi; 10 mgkg−1, p.o.) and simvastatin (Simva; 100 mgkg−1, p.o.)
on plasma triglyceride levels in high-fat-diet-MLDS male Swiss albino
mice after 28-days treatment. Bars represent means ± s.e.m. from n = 6–10.
**P < 0.01 compared with vehicle treatment; #P < 0.05 compared with
non-diabetic control animals.
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(metformin)). Interestingly, glimepiride elevated (21.3%) the
insulin levels from the vehicle-treated animals. Fenofibrate
and simvastatin reduced insulin levels from the vehicle-
treated animals but insignificantly (Figure 4). 

The primary aim of this study was to develop a rodent model of
type 2 diabetes and to investigate various classes of antidiabetic
and hypolipidaemic agents to understand the effectiveness of

these agents in this model. Insulin resistance and compensatory
hyperinsulinaemia have been shown to predict the develop-
ment of type 2 diabetes. To the best of our knowledge this has
been the first report on the effect of novel peroxisome prolifer-
ator-activated receptor (PPAR) modulators and the newer lipid
lowering agents on the metabolic abnormalities induced by
combining a high-fat diet with MLDS in Swiss albino mice. 

Type 2 diabetes often co-exists with other metabolic
risk factors, including dyslipidaemia, hypertension and obes-
ity, in the clustering known as insulin resistance syndrome (or
metabolic syndrome). The limitation of the current treatments
for type 2 diabetes highlights the inadequacy of addressing
elements of insulin resistance syndrome in isolation (Plutzky
et al 2002). 

This is the first study to report the effect of the newer
thiazolidinedione rosiglitazone in the MLDS and high-fat diet
mouse model of diabetes. Rosiglitazone significantly reduced
the three parameters glucose, triglycerides and insulin. Thia-
zolidinedione antidiabetic agents that act to directly improve
insulin sensitivity, increasing glucose uptake by adipose
tissue and skeletal muscle (Young et al 1995), are agonists for
PPARg, a member of the PPAR family of nuclear receptors
that also includes PPARa and PPARd (also known as
PPARb). PPARg, highly expressed in adipose tissue, plays an
important role in the regulation of adipogenesis lipid metabo-
lism and glucose homeostasis (Auboeuf et al 1997; Lehrke &
Lazar et al 2005). Increasing evidence suggests roles for
PPARg in cellular processes outside adipose tissue, including
for example in skeletal muscle (Loviscach et al 2000). Activa-
tion of PPARg in fat and possibly skeletal muscle is believed
to contribute to the antihyperglycaemic activity of the thiazo-
lidinediones, possibly through mechanisms including up-
regulation of transport proteins for glucose, including GLUT1
and GLUT4 (Young et al 1995; Shimaya et al 1998), and fatty
acids (Frohnert et al 1999). 

In addition, in mouse models of insulin resistance, retinoid
X receptor (RXR) agonists also ameliorate the typical symp-
toms of insulin resistance (Keller et al 1993). RXR has been
shown to act synergistically with PPARg, and RXR agonists
are capable of increasing the activity of both types of
receptors (Mukherjee et al 1997). In addition to combating
hyperglycaemia, thiazolidinediones are reported to mitigate
cardiovascular complications associated with type 2 diabetes
(Lehrke &Lazar 2005). 

PPARa is a nuclear receptor that regulates liver and skeletal
muscle lipid metabolism as well as glucose homeostasis. Acting
as a molecular sensor of endogenous fatty acids and their
derivatives, PPARa regulates the expression of genes encoding
enzymes and transport proteins controlling lipid homeostasis,
thereby stimulating fatty acid oxidation and improving
lipoprotein metabolism. PPARa also exerts pleiotropic anti-
inflammatory and antiproliferative effects and prevents the
proatherogenic effects of cholesterol accumulation in macro-
phages by stimulating efflux (Lefebvre et al 2006). 

The use of PPARa agonists, fibrates, as hypolipidaemic
agents for several decades has demonstrated their safety and
efficacy for lipid lowering, an important parameter in the
prevention of cardiovascular diseases. Moreover, increasing
evidence attributing anti-inflammatory activity to PPARa has
emerged, documented largely in in-vitro and animal studies.

Discussion

Figure 3 Effect of fenofibrate (Feno; 100 mgkg−1, p.o.), metformin
(Met; 10 mgkg−1, p.o.), glimepiride (Glime; 10 mgkg−1, p.o.), rosiglita-
zone (Rosi; 10 mgkg−1, p.o.) and simvastatin (Simva; 100 mgkg−1, p.o.)
on plasma total cholesterol levels in high-fat-diet-MLDS male Swiss
albino mice after 28-days treatment. Bars represent means ± s.e.m. from
n = 6–10. #P < 0.05 compared with non-diabetic control animals.
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Figure 4 Effect of fenofibrate (Feno; 100 mgkg−1, p.o.), metformin
(Met; 10 mgkg−1, p.o.), glimepiride (Glime; 10 mgkg−1, p.o.), rosiglita-
zone (Rosi; 10 mgkg−1, p.o.) and simvastatin (Simva; 100 mgkg−1, p.o.)
on plasma insulin levels in high-fat-diet-MLDS male Swiss albino mice
after 28-days treatment. Bars represent means ± s.e.m. from n = 6–10.
**P < 0.01, *P < 0.05 compared with vehicle treatment; #P < 0.05
compared with non-diabetic control animals.
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Predictable metabolic syndrome patients with athereogenic
dyslipidaemia (inflammation, low HDL, high triglycerides and
small dense LDL) are highly susceptible to cardiovascular mor-
bidity and respond extremely well to fibrate treatment. Rosigli-
tazone and fenofibrate are potent PPARg and PPARa agonists,
respectively (Berger et al 2005; Staels & Fruchart 2005). 

The effect of rosiglitazone and fenofibrate in this high-fat
diet and MLDS model of type 2 diabetes was in accordance
with a report by Chaput et al (2000), in which both agents
improved the elevated triglyceride and insulin levels in db/db
mice and fatty (fa/fa) Zucker rats. 

Glimepiride, a third generation sulfonylurea class of antid-
iabetic, has a mild effect on insulin secretion and is reported
to have additional extra-pancreatic effects including activation
of insulin-mediated glycogen synthesis, inhibition of hepatic
gluconeogenesis and enhancement of glucose uptake (Müller &
Wied 1993). Fukuen et al (2005) reported glimepiride to
possess agonist activity for PPARg and affected adipose gene
expression and was considered a partial agonist for PPARg.
In line with its mechanism of action, glimepiride reduced the
glucose levels with a mild elevation in insulin. Interestingly,
the correction observed in triglyceride levels could provide
the in-vivo evidence for the in-vitro studies reported by Fukuen
et al (2005) and Inukai et al (2005). 

The biguanide metformin was introduced as an anti-
diabetic drug several decades ago (Schafer 1983). The agent
has been found to lower blood glucose levels in patients with
type 2 diabetes by facilitating glucose utilization in skeletal
muscle and reducing hepatic glucose production (Galuska
et al 1991; Hundal et al 1992, 2000; Bailey &Turner 1996).
These effects appear to be mediated through inhibition of
complex 1 in the mitochondrial respiratory chain (Owen et al
2000; El-Mir et al 2000) and/or stimulation of AMP-activated
protein kinase (AMPK) (Zhou et al 2001). AMPK is activated
under conditions that deplete cellular ATP and elevate AMP,
such as glucose deprivation, heat shock, hypoxia, and ischae-
mia (Hardie et al 1998; Salt et al 1998). AMPK then phospho-
rylates and inactivates a number of metabolic enzymes
involved in fatty acid and cholesterol synthesis, including
acetyl-CoA carboxylase and HMG-CoA reductase (Brown
et al 1975; Carling et al 1987). In the liver, AMPK activation
by metformin results in reduced gluconeogenesis. Recent
studies indicated that metformin may have activated AMPK
through AMP-independent pathways (Kishi et al 2000;
Hawley et al 2002; Fryer et al 2002; Kefas et al 2004). In
agreement with earlier reports on the other genetic models of
type 2 diabetes, in this study, metformin alleviated the hyper-
glycaemia, hypertriglyceridaemia and hyperinsulinaemia in
the high-fat diet and MLDS model of diabetes. 

Statins are first-line therapy in the treatment of cholesterol-
induced atherosclerotic cardiovascular diseases (Grundy et al
2004). They are structural analogues of mevalonate and
affect, as 3-hydroxymethyl-3-glutaryl coenzyme A reductase
(HMG-CoAR) inhibitors, the rate limiting step in the choles-
terol biosynthesis cascade. They inhibit conversion of HMG-
CoA to mevalonate by competitive blocking of the responsible
enzyme, HMG-CoAR. The endogenous cholesterol synthesis
in the liver is remarkably reduced and, consequently, levels of
circulating LDL-cholesterol are decreased due to the increasing
number of LDL receptors on cell surfaces (Brown & Goldstein

1981). Statins lower all of the apolipoprotein B (apo B)-
containing lipoproteins and induce a 30–50% reduction in
apo B levels, depending on the dose used. This reduction is
accompanied by a 30–50% decrease in risk for major coro-
nary events, most of which seem to be secondary to a
decrease in apo-B-containing lipoproteins. Some investiga-
tors (Jialal et al 2001; Ridker 2003), but not all (Robinson
et al 2005), hold the position that statins are anti-inflamma-
tory beyond their effects on total apo B concentrations. One
argument for a direct anti-inflammatory effect of statins is
that they significantly reduce C-reactive protein, which is a
marker of inflammatory processes (Jialal et al 2001; Ridker
2003). If this is true, then an argument can be made that statins
are useful for treating the pro-inflammatory component of the
metabolic syndrome. Whether an anti-inflammatory action
beyond apo-B-lowering actually exists, however, is of little
practical importance, because the benefit of statin therapy in
high-risk patients is already well established. Reductions in
apo-B-containing lipoproteins in the range 30–40%, which
can be achieved by moderate (standard) doses of statins, will
reduce risk for atherosclerotic cardiovascular disease events
by 30–40%. The benefits of lowering lipoproteins containing
apo B extend to patients with both metabolic syndrome and
type 2 diabetes. Recent studies have shown that greater
reductions of apo B will cause an even greater lowering in
atherosclerotic cardiovascular disease risk (LaRosa et al
2005). However, the general principle is emerging that the
earlier LDL-lowering is started, the greater will be the long-
term risk reduction (Grundy 2006). As people with metabolic
syndrome are at higher long-term risk for atherosclerotic
cardiovascular disease, they might be good candidates for
low doses of LDL-lowering drugs when their LDL choles-
terol (LDL-C) levels begin to rise (Grundy 2006). 

In this model of type 2 diabetes and hyperlipidaemia,
simvastatin significantly reduced the triglyceride levels and exhib-
ited a mild to moderate reduction in glucose and insulin levels. 

For a long time there have been reports of the involvement
of immune systems in the pathogenesis of diabetes induced
by subdiabetogenic doses of streptozocin (McEvoy et al
1984; Mensah-Brown et al 2001). Also the role of various
inflammatory mediators including tumour necrosis factor-a,
interferon-g, interleukin-10 (Lau et al 2006), NFkB (Mabley
et al 2002) and cyclooxygenase-2 (Tabatabaie et al 2000)
have been reported in the diabetogenic effect of low-dose
streptozocin in various mouse models. It is noteworthy to
mention that most of the antidiabetic hypolipidaemic agents
used in this study were reported for their potential anti-
inflammatory and immunosuppressive (statins) effects in
various animal models, and apart from their modulation
through their primary mechanisms of action, these drugs
could substantially reduce the risk of diabetes by virtue of
their anti-inflammatory effect against streptozocin. 

Conclusions 

This study has validated the use of the high-fat diet and MLDS
model of type 2 diabetes with a variety of antidiabetic and
hypolipidaemic agents. The model used Swiss albino mice, a
commonly available and economically advantageous labora-
tory rodent. The study design was limited only to the major
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metabolic parameters of glucose, triglyceride and insulin,
hence, further detailed pharmacodynamic investigations are
required to elucidate the precise mechanisms of action of these
agents in this model, as the antidiabetics and antihyperlipidae-
mics acted on multiple pathways and mechanisms.
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